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Abstract

We discuss a general mechanism by which first integrals of mechanical systems, in particular
systems that satisfy non-holonomic constraints, can be obtained from a systematic search for adjoint
symmetries. Such an approach has already been used in our earlier work and is re-advocated here
in the context of a recent analysis by Giachetta, in which first integrals are generated by vector
fields which are not symmetries. Further advantages of our approach are: the fact that an essential
projection operator associated to the constraints need not be related to some given fibre metric on the
full evolution space, and the specific selection of a connection, which is naturally associated to this
projection and the second-order dynamics on the constraint submanifold. The computational aspects
of the method are illustrated by some simple examples.
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1. Introduction

Over the past 30 years, a variety of differential geometric models has been developed
for the description and study of non-holonomic systems; for a detailed bibliography, we
refer to two recent books on the subject[2,6]. Naturally, one of the issues which has at-
tracted attention in these studies is that of symmetry and reduction (see, e.g.[1,3,5,8]).
However, if a related unconstrained system has an easily identifiable symmetry group,
such a symmetry could well be destroyed by the constraint equations. Moreover, sym-
metries of a non-holonomic system need not give rise to a reduction of the system, nor
to an induced conservation law. The situation is somewhat reminiscent of the case of
non-conservative Lagrangian systems, where a generalization of Noether’s theorem ex-
ists, which establishes a one-to-one correspondence between first integrals and a class of
vector fields which are not symmetries (see[4]) and were later calledpseudo-symmetries
in [12].

The immediate source of inspiration for the present paper is a contribution by Giachetta
[7], who indeed shows that the idea of pseudo-symmetries can be translated to the situation
of non-holonomic systems, leading again to a one-to-one correspondence between first
integrals and certain vector fields which are generally not symmetries. The point we wish
to make, however, is that the idea of generating first integrals through pseudo-symmetries
for non-conservative systems was abandoned in the work cited above[12], in favour of a
dual concept ofadjoint symmetries. Roughly speaking, the advantage of an algorithm which
generates first integrals through the construction of adjoint symmetries is that it is universal:
it remains unaltered when passing from classical conservative mechanical systems to non-
conservative (or indeed non-holonomic) systems; the computational complexity, moreover,
is the same as the one for constructing Noether symmetries or pseudo-symmetries. Adjoint
symmetries are essentially invariant 1-forms, and they generate a first integral whenever
they are exact, in an appropriate sense. An additional benefit is that one can occasionally
obtain a surprise result in searching for such adjoint symmetries, namely that one can
obtain a Lagrangian for a given dynamical system, which was not previously known to
have one. This covers the well-known situation that a so-called non-Noether symmetry of
a Lagrangian system gives rise to an alternative Lagrangian, possibly trivial or degenerate,
however.

Our study of non-holonomic systems in[13,14]already established a theorem which is
the analogue of the one on adjoint symmetries known from previous work. Our claim now
is that such a theorem must contain all the information which Giachetta obtained when he
extended the theory of pseudo-symmetries. Establishing this statement is the main objective
of the present paper. Both[7,14] rely on the existence of a projection operator from vectors
vertical on the full evolution space, to vertical vectors tangent to the constraint submanifold.
But the projection mechanism in Giachetta’s paper is entirely different from ours, and we
shall demonstrate here that the ideas underlying our results on adjoint symmetries are
independent of the method of projection which is being used. Another point of difference is
the general formalism which we use: it is based on an adapted calculus along the projection
πC from the constraint manifoldC onto the configuration space; the advantage of such an
approach is that it provides the most economic way of modelling the underlying analytical
calculations in a coordinate-free way.
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The structure of this paper is as follows. First, we briefly review the classical concept
of an adjoint symmetry and take the opportunity to sketch in some more detail what the
general merits are of our specific calculus. The geometrical foundations of our approach in
the present context of non-holonomic mechanics are explained in Section3, and in Section
4, where we introduce a particular connection which will simplify the calculation of adjoint
symmetries. The theory of symmetries and adjoint symmetries is developed in Section
5. The main result about the relationship between a subclass of adjoint symmetries and
first integrals follows in Section6. In the final section, we illustrate the theory with some
elementary examples.

2. Adjoint symmetries versus pseudo-symmetries

In this section, we summarise the relationship between pseudo-symmetries and adjoint
symmetries, as established in[12] in the context of an autonomous Lagrangian system
without constraints; a similar description can be given when the Lagrangian has explicit
time dependence (see[15]).

SupposeL is a given regular Lagrangian onTMand the corresponding second-order field
Γ is determined by

iΓ d(S∗(dL)) = −dEL, (1)

whereSdenotes the canonical vertical endomorphism onTM, S∗ is the notation for its dual
action on 1-forms, andEL is the energy function associated toL. LetYbe a vector field on
TM and putiYd(S∗(dL)) = α. Then,i[Γ,Y ]dS∗(dL) = LΓ α, so thatY is a symmetry ofΓ
if and only if, trivially, α is an invariant 1-form. Noether symmetries are a subclass of the
symmetries ofΓ characterized by the property thatLY (S∗(dL)) = df for some functionf
and it is well known that all (time-independent) first integrals of a Lagrangian system can
be associated to such symmetries. For practical applications, one can search for Noether
symmetriesY in a certain algorithmic way, but the point to be observed here is that one can
equally well conduct a search for invariant 1-formsα directly.

It was established in[4] that for non-conservative systems, first integrals can still be put
into direct correspondence with vector fieldsY, but in general these are no longer symmetries.
For this reason they were called pseudo-symmetries in[12], and can be defined as follows. A
system with LagrangianL and extra non-conservative forces with generalized components
Qi, has the property that there is a 1-formφ satisfying the relation

LΓ (S∗(φ)) = φ; (2)

in fact,φ = dL + Qi(q, v)dqi is such a form. A vector fieldY ∈ X(TM) is then said to be
a pseudo-symmetry (with respect toφ) if

i[Y,Γ ]dS
∗(φ) = iYdφ. (3)

It is called a pseudo-symmetry of Noether type if bothLY (S∗(φ)) = df for somef, and
alsoiY (φ − di∆φ) = 0 (where∆ is the dilation field onTM); indeed(3) follows from these
conditions. But as observed in[12], if we now putα = iYdS∗(φ), the requirement(3)simply
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expresses the fact thatLΓ α = 0, as before. Hence, from the dual point of view, nothing has
changed; we are just looking for invariant 1-forms all the time.

To justify the terminologyadjoint symmetry, the point is that the essential second-order
pdes which have to be solved for the determination of adjoint symmetries do indeed con-
stitute the adjoint equations (in the sense in which this is understood in the theory of partial
differential equations) of the equations for symmetries ofΓ . Observe in addition that both
these sets of pdes are, roughly speaking, equations for only half of the components of the
corresponding 1-form or vector field onTM, the other components then being determined
automatically. The coordinate-free interpretation of this feature is that we are thus looking
at conditions for the determination of 1-forms or vector fields along the tangent bundle
projection, rather than onTM itself. For this reason, in more recent intrinsic descriptions of
adjoint symmetries, we have put the theory directly in the context of derivations of (scalar-
and vector-valued) forms along this projection (or the appropriate generalization needed for
the situation at hand). This approach first requires the availability of a connection, which
gives rise to horizontal lifting procedures complementing the naturally available vertical
lift, and to corresponding horizontal and vertical exterior derivatives. All theoretical results
can be derived in such a reduced set-up; then, if necessary, an appropriate lift of the adjoint
symmetry, regarded as 1-form along a map, will give rise to an invariant 1-form on the full
space.

We repeat that the main advantage of the adopted formalism is that it gives intrinsic
equations which model directly the pdes which will have to be solved in applications;
the corresponding lifted objects, although geometrically equally important, provide in a
sense a double set of equations, half of which relate to redundant components. For a full
account of the theory of derivations along the tangent bundle projection, we refer to[10,11].
Elements of such a calculus, suitably adapted to the case where non-holonomic constraints
are involved, were already used in[13,14]. We begin, in the next section, by setting up the
structures which are needed to approach the specific situation studied by Giachetta from
the same point of view.

3. A geometric structure for non-holonomic mechanics

From now on, we consider the time-dependent case, and take an (n + 1)-dimensional
configuration manifoldE and a fibrationτ : E → R. We shall consider dynamical systems
defined, not on the whole of the first jet spaceJ1τ of τ, but rather on some closed submanifold
C ⊂ J1τ, where dimJ1τ = 2n + 1, dimC = n + m + 1; soC is theconstraint manifoldof
the system. If we letπ : J1τ → Ebe the induced jet projection then we may putπC : C → E

for the restriction ofπ; we shall consider only those systems whereπC is a sub-bundle (not
necessarily affine). In general,C will not be the jet space of a submanifold ofE, and then
the constraints will benon-holonomic.

Let (t, qi, q̇i) be coordinates onJ1τ and (t, qi, za) coordinates onC (where a =
1,2, . . . , m), so thatza are coordinates on the fibres ofπC. C can locally be described
as the level setφµ = 0 of some functionsφµ (whereµ = 1,2, . . . , n − m) satisfying the
non-degeneracy condition that the rank of the matrix∂φµ/∂q̇i should be maximal at points
of C. Alternatively, we shall letψi(t, q, z) be the coordinate representation of the inclusion
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mappingι : C → J1τ, so thatψi = q̇i ◦ ι. We then have the identity

∂ψi

∂za

∂φµ

∂q̇i
= 0, (4)

valid at points ofC. We shall writêθi = ι∗θi for the pull-backs of the contact forms onJ1τ,
so thatθ̂i = dqi − ψidt.

The construction given by Giachetta in[7] started from the assumption that we have a
fibre metricg, defined on vertical vectors onJ1τ, which is in fact an assumption used by
many authors, the fibre metric usually coming from the Lagrangian of a given unconstrained
system. Ifĝ is the restriction ofg to vertical vectors tangent toC, Giachetta defines a
projectionP by

ĝ(P(ξ), η) = g(ξ, η)

for all ξ, η which are vertical vectors at the same point ofC, with η tangent toC. In
coordinates, such a projection is of the form

P

(
∂

∂q̇i

)
= Pa

i

∂

∂za
, withPa

i = gab
∂ψj

∂zb
gij. (5)

Here,gij, gab are the components ofg and ĝ, respectively, andgacgcb = δab. The reason
why vertical vectors tangent toC are important is that they represent the vertical lifts of
admissible virtual displacements in the sense of the Chetaev-d’Alembert principle. The
metricg (and the derived projectionP) further play a role in Giachetta’s construction of a
reduced or constrained dynamics, which is a certain second-order equation field onC, and
in the definition of an associated connection. But there are other ways in which a projector
such asP may occur and a representation of the dynamics onC may be obtained. In our
previous work[13,14], for example, we have used a connection on an auxiliary bundle
E → M in order to define the constraint manifold, and this construction also produces a
projectionP. In [9], a more general almost product structure on the jet manifold is used,
and its restriction to vertical vectors is a projection of the same kind.

Our analysis in this paper, therefore, will start from the two essential geometrical ob-
jects which are eventually present in all models for non-holonomic systems (adopting the
Chetaev-d’Alembert point of view), without making a distinction about the way they arise:
a second-order differential equation field (Sode) Γ on C and a certain projectorP onto
vertical vectors tangent toC. Further specific features of our approach are that we shall
construct a natural connection, associated toΓ andP which differs from the one used, for
example, in[7], and that for reasons explained in the preceding section, we shall do most
of our intrinsic calculations with vector fields and formsalong the projectionπC : C → E;
the relationship of these to corresponding objects on the manifoldC will be an important
part of our story.

So,Γ ∈ X(C) is required to have the properties〈Γ,dt〉 = 1, 〈Γ, θ̂i〉 = 0. In coordinates,

Γ = ∂

∂t
+ ψi ∂

∂qi
+ fa ∂

∂za
(6)

for some functionsfa defined onC.
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Let Γ a
i , Γ a

0 be the connection coefficients of an arbitrary non-linear connection on the
bundleπC, so that(

∂

∂qi

)H

= Hi = ∂

∂qi
− Γ a

i

∂

∂za
,

(
∂

∂t

)H

= H0 = ∂

∂t
− Γ a

0
∂

∂za
, (7)

and a basis forX(C) is given by{H0, Hi, Va}, whereVa = ∂/∂za. By linearity over functions
onC, the horizontal lift operation extends to a map fromX(πC), the space of vector fields
alongπC, toX(C). It applies in particular to

TC = ∂

∂t
+ ψi ∂

∂qi
, (8)

which is the restriction toC of the canonical total-time derivative operatorT. Most of our
subsequent analysis can be carried out for any choice of a connection which iscompatible
with theSode Γ in the sense of the following definition.

Definition 1. A connection onπC is said to be compatible with a givenSode Γ on C, if
TH
C = Γ .

This compatibility simply means that

Γ a
0 = −(fa + ψiΓ a

i ). (9)

Now every vector fieldZ alongπC has a unique decompositionZ = 〈Z,dt〉TC + Z̄, where
Z̄ has no∂/∂t component, and in the same way every vector fieldX onC has a unique de-
compositionX = 〈X,dt〉Γ + Z̄H + V , whereV is a vertical vector field; we may therefore
write

X(πC) = 〈TC〉 ⊕ X̄(πC),

X(C) = 〈Γ 〉 ⊕ X̄(C) ⊕ V(C),

and the compatibility further means that the connection is completely determined by a
horizontal lift from X̄(πC) to X̄(C). In [13,14], we have described a particular connection
satisfying this property, and details of this for the present setting will be given again in
Section4.

Translated to the framework of vector fields alongπC, for having the kind of projection
P described above, we need to identify a submodule ofX̄(πC) as follows.

Definition 2. The space of virtual displacements is the submoduleX̄C ⊂ X̄(πC) of vector
fields alongπC, whose canonical vertical lift toJ1τ yields an element ofX(C).

So now, the second piece of information we assume to be given is a projection
P : X̄(πC) → X̄C, which may be considered as a tensor field alongπC. We denote the
complement tōXC under the projectionP by X̃C, so that

X̄(πC) = X̄C ⊕ X̃C
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and we letQ be the complementary projection̄X(πC) → X̃C. We shall sometimes also be
explicit in our use of the corresponding inclusion mapsI : X̄C → X̄(πC),J : X̃C → X̄(πC).

Dually, denoting byX∗(πC) the space of 1-forms alongπC (which we can identify with
the space of semi-basic 1-forms onC), we have

X∗(πC) = 〈dt〉 ⊕ C(πC)

whereC(πC) can be identified with the space of contact forms onC, spanned bŷθi. The
dual of the decomposition of̄X(πC) is then

C(πC) = C̄C ⊕ C̃C

where 〈X̄C, C̃C〉 = 〈X̃C, C̄C〉 = 0. The dual maps of the inclusionsI, J are projections
I∗ : C(πC) → C̄C andJ∗ : C(πC) → C̃C, whereas corresponding inclusion maps areP∗ :
C̄C → C(πC) andQ∗ : C̃C → C(πC). In coordinates, a local basis for the spaceX̄C is given
by the vector fields

Za = ∂ψi

∂za

∂

∂qi
(10)

becauseZV
a = Va. The projectionP may then be determined by some functionsPa

j (not
necessarily the functions(5)), for which

P

(
∂

∂qj

)
= Pa

j Za, with
∂ψi

∂zb
Pa
i = δab. (11)

It follows that we can take

θa = Pa
i θ̂

i (12)

to be the basis of̄CC dual to the basisZa. A local basis for the spacẽCC is also easy to
construct, starting with the functionsφµ definingC ⊂ J1τ. Indeed, puttingηµ = ι∗S∗(dφµ),
whereS is the vertical endomorphism onJ1τ, so that

ηµ = ∂φµ

∂q̇j
θ̂j, (13)

we have〈Za, η
µ〉 = 0, in view of (4). The non-degeneracy condition on the functions

φµ ensures that these forms are linearly independent, and hence constitute a basis ofC̃C.
By dimension, we know that the contact formsθ̂i are spanned by theθa andηµ. Since
〈Zb, θ̂

i〉 = ∂ψi/∂zb, putting

θ̂i = ∂ψi

∂za
θa + Zi

µη
µ (14)

for some functionsZi
µ onC, it follows from (12) and (13)that

Pa
i Z

i
µ = 0,

∂φν

∂q̇i
Zi

µ = δνµ, δij = ∂ψi

∂za
Pa
j + Zi

µ

∂φµ

∂q̇j
. (15)
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A basis forX̃C and representation for the projectionQ finally is given by

Zµ = Zj
µ

∂

∂qj
, Q

(
∂

∂qj

)
= ∂φµ

∂q̇j
Zµ. (16)

The various identities which we have obtained in this discussion will frequently be used
in the calculations which follow, as will the decomposition for∂/∂qi, regarded as a vector
field alongπC, namely

∂

∂qi
= Pa

i Za + ∂φµ

∂q̇i
Zµ. (17)

We emphasize that these decompositions do not make any a priori assumptions about the
relationships between the connection, the projections and the dynamical vector field, beyond
the single compatibility conditionΓ = TC

H .

4. A natural connection for non-holonomic mechanics

We shall now make a specific choice of connection associated to each pair (Γ, P). This
choice uses the vertical endomorphismŜ onC induced by the projectionP.

Definition 3. For eachX ∈ X(C), we letŜ(X) be the vector field onC defined by

Ŝ(X) = (P(TπC ◦ X))V .

Here, P is interpreted in an extended sense as projection〈TC〉 ⊕ X̄(πC) → X̄C, with
P(TC) = 0. In coordinates, therefore,

Ŝ = Pa
i Va ⊗ θ̂i = Va ⊗ θa. (18)

We now use the tensorLΓ Ŝ to define our non-linear connection in a way similar to the
construction in[13,14].

Theorem 1. The tensor fieldPH on C, determined by

PH = 1
2(id − LΓ Ŝ + Γ ⊗ dt + N), (19)

whereby

N = id − (LΓ Ŝ)2 − Γ ⊗ dt, (20)

is the horizontal projector of a uniquely defined non-linear connection onπC.

Proof. In coordinates, we have

LΓ Ŝ = Va ⊗ (Γ (Pa
i )θ̂i + Pa

i (dψi − Γ (ψi)dt)) −
(

∂ψi

∂za

∂

∂qi
+ ∂f b

∂za

∂

∂zb

)
⊗ θa.
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Now, if

Γ = TH
C , Xa = ZH

a , Xµ = ZH
µ , Va = ZV

a

is a basis of vector fields onC adapted to the connection we are about to fix, with dual basis
of 1-forms

dt, θa, ηµ, ηa = dza + Γ a
i

(
∂ψi

∂zb
θb + Zi

µη
µ

)
− fadt,

one can verify that the coordinate expression forPH can be written in the form

PH = Γ ⊗ dt + Xa ⊗ θa + Xµ ⊗ ηµ − Zj
µ(Ra

j − Γ a
j )Va ⊗ ηµ

− 1

2

∂ψj

∂zb
(Ra

j − 2Γ a
j )Va ⊗ θb,

with

Ra
i = Γ (Pa

i ) + Pa
j

∂ψj

∂qi
− Pb

i

∂f a

∂zb
. (21)

For this to have the required properties of a horizontal projector, its image must be the space
spanned byΓ , Xa andXµ, so that we must have

∂ψj

∂zb
Γ a
j = 1

2

∂ψj

∂zb
Ra

j, (22)

Zj
µΓ

a
j = Zj

µR
a
j . (23)

It turns out, making use of the third of the identities(15) that these conditions imply that

Γ a
i = Ra

i − 1

2
Pb
i

∂ψj

∂zb
Ra

j . (24)

Conversely, one can verify that this expression forΓ a
i is compatible with both requirements

(22) and (23), in view of the first of the identities(15) and (11). �

We remark that previous work has indicated a relationship between the decomposition
of spaces of vector fields and the eigenspaces ofLΓ Ŝ. It is always the case thatΓ andVa are
eigenvectors with eigenvalues 0 and 1, respectively; our choice of connection coefficients
means also thatXa are eigenvectors with eigenvalue−1, and thatXµ are eigenvectors with
eigenvalue 0.

5. Symmetries and adjoint symmetries

Dynamical symmetries ofΓ are vector fieldsX onC whose Lie derivative with respect
to Γ is in the span ofΓ . Two such symmetries are equivalent if they differ by a multiple
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of Γ , and the simplest representative in each class, therefore, has noΓ -component and is
strictly invariant under the flow ofΓ . Any suchX ∈ X(C) can be written in the form

X = Z̄H + Z̃H + ȲV , (25)

with Z̄, Ȳ ∈ X̄C andZ̃ ∈ X̃C; from now on, a vector field written with a bar (such asZ̄) will
always be an element of̄XC rather than, more generally, of̄X(πC) = X̄C ⊕ X̃C, and a vector
field written with a tilde (such as̃Z) will always be an element of the complementX̃C. The
idea, for such a vector fieldX, is to compute the decomposition of theLΓ -derivative of each
part. As we know from experience in previous work, this computation will introduce the
essential operators which we need to develop the theory with vector fields and forms along
πC. Once we obtain the equation for symmetries in this format, the corresponding equation
for adjoint symmetries will be computed by applying the usual procedure for passing to
adjoint equations, and is bound to be an equation for a 1-form alongπC. We shall then
verify that the equation thus obtained is conceptually the right one by proving that there is
indeed an associated 1-form onC, which is invariant under the flow ofΓ .

So, our programme starts by the computation ofLΓZH
a ,LΓZH

µ andLΓZV
a . In fact,

sinceZa andZµ originate as projections of∂/∂qi, we shall first computeLΓHi. A direct
computation leads to

LΓHi = −Hi(ψ
j)Hj + Φ̂a

i Va, (26)

where

Φ̂a
i = Hi(Γ

a
0 ) + ψjHi(Γ

a
j ) − Γ (Γ a

i ). (27)

The appropriate way to interpret(26) is to write it as

LΓ

(
∂H

∂qi

)
=
(

∇ ∂

∂qi

)H

+
(
Φ̂

(
∂

∂qi

))V

. (28)

The vertical part defines a tensorial objectΦ̂ : X(πC) → X̄C, whereas the horizontal part
gives rise to a derivation∇ of degree 0 onX(πC), defined as follows.

Definition 4. The dynamical covariant derivative associated to the givenSode Γ is the
derivation∇ of theC∞(C)-moduleX(πC), determined by

∇F = Γ (F ), forF ∈ C∞(C), ∇ ∂

∂qi
= −Hi(ψ

j)
∂

∂qj
, ∇TC = 0. (29)

Its action on the dual moduleX∗(πC) is defined by standard duality rules.

In view of the defining relations ofZa andZµ, it now follows that

LΓZH
a = (∇Za)H + (ΦZa)V , (30)

LΓZH
µ = (∇Zµ)H + (ΛZµ)V , (31)
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where we have introduced the tensor fieldsΦ : X̄C → X̄C andΛ : X̃C → X̄C, locally given
by

Φ = Φa
b θ

b ⊗ Za, Φa
b = ∂ψi

∂zb
Φ̂a

i , (32)

Λ = Λa
µ ηµ ⊗ Za, Λa

µ = Zi
µΦ̂

a
i . (33)

The particular choice of connection which was proposed in the previous section leads to a
significant simplification in the expressions for∇Za and∇Zµ, as we shall now see.

Proposition 1. ∇ has the properties∇X̃C ⊂ X̃C and∇X̄C ⊂ X̄C ⊕ X̃C, wherebyP∇ is a
derivation of the modulēXC, whereasΨ := Q∇|X̄C

is a tensorial map from̄XC into X̃C.

Proof. The proof is a matter of a direct computation, of which we leave the details to the
reader. One starts from(29)and the decomposition(17); using the identities(15), together
with the functionsRa

i as defined by(21), the first statement follows from the property(23)
(the other property(22) of our connection simplifies thēXC-component of∇Za, but does
not cancel it out). The results of these computations, which we need for applications, in fact
read

∇Zµ = ∂φν

∂q̇i
(Γ (Zi

µ) − Zj
µHj(ψ

i))Zν = −Zi
µ

(
Γ

(
∂φν

∂q̇i

)
+ ∂φν

∂q̇j
Hi(ψ

j)

)
Zν,

(34)

∇Za = −
(

∂ψj

∂za
Γ b
j + ∂f b

∂za

)
Zb + Ψµ

a Zµ, (35)

where we have put

Ψµ
a = ∂φµ

∂q̇i

(
Γ

(
∂ψi

∂za

)
− ∂ψj

∂za
Hj(ψ

i)

)
= −∂ψj

∂za

(
Γ

(
∂φµ

∂q̇j

)
+ Hj(ψ

i)
∂φµ

∂q̇i

)
.

(36)

It follows from (35), taking the derivation property of∇ into account, that theΨµ
a are

actually components of a tensor field alongπC, of the form

Ψ = Ψµ
a θa ⊗ Zµ, (37)

from which the last statement follows.�

We finally come to the computation of the Lie derivative ofZV
a for which, in view of

(35), we obtain

LΓZV
a = −ZH

a + (P∇Za)V . (38)

More generally, forZ̄ ∈ X̄C andZ̃ ∈ X̃C, it immediately follows that

LΓ Z̄H = (∇Z̄)H + (ΦZ̄)V , (39)
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LΓ Z̃H = (∇Z̃)H + (ΛZ̃)V , (40)

LΓ Z̄V = −Z̄H + (P∇Z̄)V . (41)

Proposition 2. Let X be a general vector field on C, of the form(25). Then

LΓX = 0 ⇔
{

∇Z̄ + ∇Z̃ − Ȳ = 0

ΦZ̄ + ΛZ̃ + P∇Ȳ = 0
(42)

⇔ P∇(P∇Z̄) + ∇Z̃ + ΦZ̄ + ΛZ̃ + ΨZ̄ = 0. (43)

Proof. The first equivalence follows immediately from the preceding calculations, by sep-
arating the horizontal and vertical parts. Observe next that the second of the conditions(42)
lives entirely onX̄C, whereas the first splits further into two parts by projecting underP
andQ. We thus have

Ȳ = P∇Z̄, (44)

which simply fixes the vertical part of a symmetry vector field, and consequently

∇Z̃ + ΨZ̄ = 0, (45)

ΦZ̄ + ΛZ̃ + P∇(P∇Z̄) = 0. (46)

In conclusion, the determining equations which have to be solved for constructing sym-
metries ofΓ , after the redundant part̄Y has been eliminated, are the partial differential
Eqs.(45) and (46). Since they live on complementary spaces, they can formally be added
together to the single condition(43), to which we will refer as thesymmetry condition. �

The procedure for constructing the adjoint equation now follows the standard pattern.
We contract the left-hand side of(43) with a 1-form alongπC of the form ᾱ + α̃, with
ᾱ ∈ C̄C, α̃ ∈ C̃C; tensor fields are transferred from left to right by taking adjoints; and the
operator∇ is carried over to the form side by using the duality rule

〈∇·, ·〉 = ∇〈·, ·〉 − 〈·,∇·〉,

and ignoring the first term on the right (which gives rise to a boundary term in the context
of the calculus of variations).

For clarity, let us list the domains and ranges of the adjoint or dual operators involved.
We have the injectionsP∗ : C̄C → X∗(πC), Q∗ : C̃C → X∗(πC), and the projection oper-
atorsI∗ : X∗(πC) → C̄C, J∗ : X∗(πC) → C̃C. Furthermore,Φ∗ : C̄C → C̄C, Λ∗ : C̄C →
C̃C, Ψ∗ : C̃C → C̄C. Finally, the results ofProposition 1dualize to

∇C̄C ⊂ C̄C, ∇C̃C ⊂ C̄C ⊕ C̃C. (47)

Proposition 3. The adjoint symmetry condition reads

∇2ᾱ − J∗∇α̃ + Λ∗ᾱ + Φ∗ᾱ + Ψ∗α̃ = 0, (48)
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or equivalently

∇2ᾱ + Φ∗ᾱ + Ψ∗α̃ = 0, (49)

J∗∇α̃ − Λ∗ᾱ = 0. (50)

Proof. Taking all properties about domain and range into account, the dualization procedure
leads to the expression〈Z̄,∇2ᾱ + Φ∗ᾱ + Ψ∗α̃〉 − 〈Z̃, J∗∇α̃ − Λ∗ᾱ〉. Setting the terms in
Z̄ and Z̃ separately equal to 0 then implies that(49) and (50)must hold and these can
formally be added together to produce (equivalently) the single condition(48). �

As announced at the beginning of this section, there should now be a way to associate an
adjoint symmetry, i.e. a 1-form̄α + α̃ alongπC, satisfying(48), with an invariant 1-form
on C. The procedure for lifting 1-forms is derived from the lift of vector fields: that is to
say, for the horizontal and vertical lift of a 1-formα ∈ X∗(πC), the rule generally is that for
all Z ∈ X(πC),

〈ZH, αH 〉 = 〈ZV , αV 〉 = 〈Z, α〉, 〈ZV , αH 〉 = 〈ZH, αV 〉 = 0.

This means (remembering that we make no notational distinction between forms alongπC

and their interpretation as semi-basic forms onC) that we have

dtH = dt, (θa)H = θa, (ηµ)H = ηµ, (θa)V = ηa.

Proposition 4. ᾱ + α̃ ∈ X∗(πC) is an adjoint symmetry if and only if the 1-formη on C,
given by

η = ᾱV + α̃H − (∇ᾱ)H, (51)

is invariant underΓ .

Proof. Part of the proof concerns the determination of the last term in(51), so let us write
η = ᾱV + α̃H − β̄H for the time being. ForLΓ η to be 0, it is necessary and sufficient that
its contractions with an arbitrarȳZV , Z̄H andZ̃H are all 0. Essentially, we are going to
express this by making use of the formulas(39)–(41). We have, for example,

〈Z̄V ,LΓ ᾱV 〉 = LΓ 〈Z̄, ᾱ〉 − 〈LΓ Z̄V , ᾱV 〉 = ∇〈Z̄, ᾱ〉 − 〈P∇Z̄, ᾱ〉 = 〈Z̄,∇ᾱ〉.

In exactly the same way, we find〈Z̄V ,LΓ α̃H 〉 = −〈Z̄, α̃〉 = 0 and −〈Z̄V ,LΓ β̄H 〉 =
−〈Z̄, β̄〉. Adding this up, we conclude that〈Z̄V ,LΓ η〉 = 0 requires that̄β = ∇ᾱ.

In exactly the same way, one can verify that〈Z̃H ,LΓ η〉 = 0 requires that(50)must hold,
and〈Z̄H ,LΓ η〉 = 0 imposes the condition(49). �

For later use, we list the dynamical covariant derivatives of the local basis of 1-forms
alongπC. First of all, it follows from(29)by duality that

∇ θ̂i = Hj(ψ
i)θ̂j, ∇dt = 0. (52)
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Substituting for̂θi the decomposition(14) and projecting the resulting expression underP
andQ, we obtain, in view of the simplifications brought by the choice of our connection
and in agreement with the properties(47),

∇θb =
(

∂ψj

∂za
Γ b
j + ∂f b

∂za

)
θa, (53)

∇ην = −Ψν
a θ

a − ∂φν

∂q̇i
(Γ (Zi

µ) − Zj
µHj(ψ

i)) ηµ. (54)

6. A special class of adjoint symmetries

Based on our experience in[13,14], we expect that interesting classes of adjoint sym-
metries could be constructed from horizontal and vertical exterior derivatives of functions
onC. So, we start by defining such operations on forms alongπC for the situation at hand.
We shall not pursue the development of the theory of derivations of forms alongπC in
any detail here; instead we limit ourselves to the bare essentials for doing calculations. For
F ∈ C∞(C), we define

dVF = Va(F )θa, (55)

dHF = Γ (F )dt + Hi(F )θ̂i = Γ (F )dt + Xa(F )θa + Xµ(F )ηµ. (56)

One easily verifies in coordinates that

dF = (dVF )
V + (dHF )

H
. (57)

When an adjoint symmetryα = ᾱ + α̃ ∈ X∗(πC) is generated by a functionF, it is clear that
ᾱ is likely to be of the form dVF , whereas̃α should arise from dHF (explicitly, α̃ = J∗dHF ).
So, to verify under which circumstances such anα satisfies the adjoint symmetry condition,
we need information about the way the dynamical covariant derivative∇ commutes with
the exterior derivatives. The following commutator relations follow from a straightforward
coordinate calculation, making use of the bracket formulas(30), (31), (38)and the covariant
derivatives(53) and (54):

∇dVF − dV∇F = −I∗dHF, (58)

∇(J∗dHF ) − J∗dH∇F = Λ∗dVF − Ψ∗J∗dHF, (59)

∇(I∗dHF ) − I∗dH∇F = Φ∗dVF + Ψ∗J∗dHF. (60)

It is of some interest to compare these results with the very similar formulas in[14], but
we will not pursue this here. It further follows from(59) that

J∗(∇J∗dHF ) − J∗dH∇F = Λ∗dVF. (61)

Theorem 2. A 1-form alongπC of the formα = dVF + J∗dHF is an adjoint symmetry of
Γ , if and only if the functionL = ∇F = Γ (F ) satisfies the equations

J∗dHL = 0, I∗dHL = ∇dVL. (62)
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Proof. Inserting the assumptions for̄α and α̃ into the condition(50) and making use of
(61) immediately producesJ∗dHL = 0. From(58) it follows that∇ᾱ = dV∇F − I∗dHF .
Applying∇ again and using(58) and (60), we obtain the second of the conditions(62)from
(49). �

Our main interest here is in a mechanism which is capable, in principle, of generating
all first integrals of the system. Obviously, it follows from the above considerations that for
every first integralF of Γ , the 1-formα = dVF + J∗dHF will be an adjoint symmetry. A
slight inconvenience in the theorem may seem that, conversely, not every adjoint symmetry
of this form will produce a first integral. A practical implementation goes as follows: one
first solves the determining equations for adjoint symmetries, with a certain ansatz about
the polynomial dependence on the fibre coordinatesza; having found an adjoint symmetry
α, one checks whether̄α can be written as dVF for someF; if this is the case, one verifies
whetherα̃ also has the appropriate form, while making use of the additional freedom of
adding basic functionsf to thisF. Experience shows that, in most cases, the functionsF + f

thus obtained will be first integrals ofΓ . But what if they are not?
In coordinates, the relations(62)express that the functionL = Γ (F ) will satisfy:

Xµ(L) = 0, (63)

Γ

(
∂L

∂za

)
= Xa(L) − ∂L

∂zb

(
∂f b

∂za
+ ∂ψj

∂za
Γ b
j

)
. (64)

These equations are entirely similar to the ones obtained in[13]. In the framework of
that paper, it is perfectly understood what it means for a non-holonomic system to be of
‘Lagrangian type’, and the functionsL originating from the adjoint symmetry theory turn out
to correspond to a subclass of such Lagrangian systems, the Lagrangian being independent
of the fibre coordinates of the extra fibration. It will be an interesting topic for future studies
to explore what ‘variationality’ means in the more general present context of a given pair
(Γ, P) for the constraint submanifold. The conjecture is that, again, functionsL = Γ (F )
satisfying(63) and (64)will constitute a subclass of such Lagrangian systems, provided
they have a non-degenerate Hessian with respect to theza.

7. Some examples

As a preliminary to looking at particular examples, we shall first write down the deter-
mining equations for adjoint symmetries in coordinates. Puttingᾱ = αaθ

a, α̃ = αµη
µ, and

making use of the covariant derivative expressions(53) and (54), Eq.(49)becomes

Γ 2(αa) + 2Γ (αb)

(
∂ψj

∂za
Γ b
j + ∂f b

∂za

)
+ αb Γ

(
∂ψj

∂za
Γ b
j + ∂f b

∂za

)

+αb

(
∂ψj

∂zc
Γ b
j + ∂f b

∂zc

)(
∂ψi

∂za
Γ c
i + ∂f c

∂za

)
+ Φb

aαb + Ψµ
a αµ = 0, (65)
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and(50) reads

Γ (αµ) − αν

∂φν

∂q̇i
(Γ (Zi

µ) − Zj
µHj(ψ

i)) − Λa
µαa = 0. (66)

Needless to say, these are quite complicated equations, but the point is that they are of the
same complexity as those which will have to be solved using, for example, Giachetta’s[7]
procedure to search for (non-symmetry) vector fields which generate first integrals. In fact
our equations become quite simple in practice, once an ansatz is made about the polynomial
structure of the unknown functions with respect to the fibre coordinates. But the calculations
then can still be quite tedious, so that one will be led to call in assistance of one’s favourite
computer algebra package.

Our first example will be one we have considered in previous work[16], namely a sled
which is constrained to move so that its velocity is always in the direction of its orientation.
If the coordinates on the configuration manifoldE = R × (R2 × S1) are (t, x, y, ϕ), where
x, y represent the position of the centre of mass andϕ represents orientation, then the
constraint may be written in the form

φ1 = ẏ − ẋ tanϕ = 0

for most values ofϕ. The unconstrained equations of motion, which are of no direct relevance
for our purposes, however, are generated by a Lagrangian

L = 1
2(ẋ2 + ẏ2 + ϕ̇2)

(where we have, for simplicity, set the mass and the moment of inertia equal to 1). What
matters is the dynamical vector fieldΓ on the constraint manifoldC; taking fibre coordinates
z1 = u = ẋ ◦ ι, z2 = v = ϕ̇ ◦ ι, it is given by

Γ = ∂

∂t
+ u

∂

∂x
+ u tanϕ

∂

∂y
+ v

∂

∂ϕ
− uv tanϕ

∂

∂u
,

which exhibits also what theψi are in this case. To define a projectionP, it suffices to choose
any functionsPa

i which satisfy(11). A convenient choice (witha = 1,2 andi = 1,2,3) is
given by

(Pa
i ) =

(
cos2 ϕ cosϕ sinϕ 0

0 0 1

)
.

The local basis{Za} follows directly from(10) while, with our choice forφ1, it follows
from (16) that the single element{Zµ} here is given byQ(∂/∂y) = (id − P)(∂/∂y). The
result is that{

∂

∂x
+ tanϕ

∂

∂y
,

∂

∂ϕ

}
∈ X̄C and

{
cos2 ϕ

∂

∂y
− sinϕ cosϕ

∂

∂x

}
∈ X̃C,
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and it is a safeguard to verify that the identities in(15)are satisfied. The final basic ingredient
of our approach, namely the connection as defined by(19) and leading to the connection
coefficients(24), here gives

(Γ a
i ) =

(
−v sinϕ cosϕ v cos2 ϕ u tanϕ

0 0 0

)
.

Concerning the tensorial quantities entering the adjoint symmetry Eqs.(65) and (66),
one can verify thatΛa

µ = 0, while

(Φa
b) =

(
v2 0

−uv 0

)
, (Ψµ

a ) = 1

cos2 ϕ

(
v

−u

)
.

Denoting the single componentαµ here, for convenience, byβ, the adjoint equations now
become

Γ 2(α1) − 2v tanϕ Γ (α1) + βv sec2 ϕ = 0,

Γ 2(α2) − uvα1 − βu sec2 ϕ = 0,

Γ (β) + βv tanϕ = 0.

An obvious particular solution is the zero solutionα1 = α2 = β = 0. It produces an adjoint
symmetry of the form dVF + J∗dHF , with F = x + y tanϕ. Clearly, suchF cannot be a
first integral. Instead, we easily see thatL = Γ (F ) = sec2 ϕ(u + vy) satisfies the conditions
(63) and (64). Whatever the meaning of such ‘surprise-Lagrangians’ will turn out to be,
however, it is clear that we do not really have a good example here, because thisL is
degenerate.

Note that the general solution of the third equation is of the formβ = G cosϕ, where
G is any first integral. This could be used to generate further adjoint symmetries, once we
start obtaining first integrals. The natural assumption to start looking for particular solutions
of the adjoint equations which are polynomial in the fibre coordinates is to let theαa be
functions of the base variables only and takeβ to be linear inu, v. One readily observes
that theαa then can be at most linear int. Looking first for time-independent solutions,
a systematic search, for which we made use of Maple, leads to six independent particular
solutions:

(i) α1 = 0, α2 = 1, β = 0;
(ii) α1 = 1, α2 = y, β = 0;

(iii) α1 = tanϕ, α2 = −x, β = 0;
(iv) α1 = secϕ, α2 = 0, β = −v cosϕ;
(v) α1 = 2(y − x tanϕ), α2 = x2 + y2, β = 2u;

(vi) α1 = 0, α2 = ϕ, β = 0.
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The first five of these give rise to first integrals, which read, respectively:

F1 = v, F2 = u + yv, F3 = u tanϕ − xv, F4 = u secϕ,

F5 = 2u(y − x tanϕ) + v(x2 + y2).

The sixth also is an adjoint symmetry of type dVF + J∗dHF , but L = Γ (F ) = v2 is a
‘degenerate Lagrangian’. Extending the search to time-dependent solutions, one obtains
a further adjoint symmetry, which corresponds to the first integralF6 = ϕ − vt. Needless
to say, this is a very simple example: the differential equations coming fromΓ can in
fact be completely integrated; the first integrals (F1, F2, F3, F4, F6) determine the general
solution.

Our second example is taken from[7], and is the fourth example in that paper: it concerns
a non-holonomically constrained free particle. Here, the configuration manifold isE =
R × R3 with coordinates (t, x, y, z) and the constraint manifoldC is given by ż = yẋ.
Taking fibre coordinatesu = ẋ ◦ ι, v = ẏ ◦ ι, the dynamical vector field onC is given by

Γ = ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ yu

∂

∂z
− yuv

1 + y2

∂

∂u
.

We use Giachetta’s choice of a projection here, which comes from the free particle La-
grangian in the sense of(5):

(Pa
i ) =

(
(1 + y2)−1 0 y(1 + y2)−1

0 1 0

)
.

The connection is

(Γ a
i ) =

(
−yv(1 + y2)−2 yu(1 + y2)−1 v(1 + y2)−2

0 0 0

)
.

A calculation similar to that carried out for the previous example yields the adjoint equations

Γ 2(α1) − 2yv(1 + y2)−1Γ (α1) + 2y2v2(1 + y2)−2α1 + vβ = 0,

Γ 2(α2) − uv(1 + y2)−2α1 − uβ = 0,

Γ (β) + yv(1 + y2)−1β − 2yv2(1 + y2)−3α1 = 0.

Looking for time-independent solutions where theαa are functions of the base variables only
andβ is linear inu, v we again use Maple to find four solutions giving rise to independent
first integrals:

(i) α1 = 0, α2 = 1, β = 0;
(ii) α1 = −(1 + y2), α2 = z, β = 2v(1 + y2)−1;

(iii) α1 = −(1 + y2)1/2, α2 = 0, β = v(1 + y2)−3/2;
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(iv) α1 = −(1 + y2)1/2 arcsinhy, α2 = x,

β = −vy(1 + y2)−1 + (1 + y2)−3/2 arcsinhy.

The corresponding first integrals are:

F1 = v, F2 = −u(1 + y2) + vz, F3 = −u(1 + y2)1/2,

F4 = −u(1 + y2)1/2 arcsinhy + vx.

Note that only two first integrals were given in[7], namely1
2(F2

1 + F2
3 ) and−F3. A fifth,

time-dependent first integral,F5 = y − vt, may be found easily by inspection from the
expression for the dynamical vector field, and thus the equations can again be completely
integrated. In the course of the analysis, we also find a few adjoint symmetries which satisfy
the assumptions ofTheorem 2, but do not produce a first integral; they lead to degenerate
type functionsL, and so are not of great interest.

An example of an adjoint symmetry giving rise to a non-degenerate Lagrangian can be
found in[13], for the classical problem of a vertically rolling disc.
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